0

Introduction to Circuit Analysis and Design

Erschienen am 27.01.2011, 1. Auflage 2011
139,09 €
(inkl. MwSt.)

Lieferbar innerhalb ca. 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9789048194421
Sprache: Englisch
Umfang: xv, 768 S.
Einband: gebundenes Buch

Beschreibung

Introduction to Circuit Analysis and Design takes the view that circuits have inputs and outputs, and that relations between inputs and outputs and the terminal characteristics of circuits at input and output ports are all-important in analysis and design. Two-port models, input resistance, output impedance, gain, loading effects, and frequency response are treated in more depth than is traditional. Due attention to these topics is essential preparation for design, provides useful preparation for subsequent courses in electronic devices and circuits, and eases the transition from circuits to systems.

Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg

Autorenportrait

Tildon H. Glisson is Professor Emeritus of Electrical Engineering at North Carolina State University, where he taught graduate and undergraduate courses in communication, control, signal processing, and (most recently) electric circuits. He served as Director of Graduate Programs for the Electrical and Computer Engineering Department and as Associate Dean and Interim Dean of the College of Engineering.

Inhalt

Preface. 1 Introduction. 1.1 Electric Circuits. 1.2 How to Study This Book. 1.3 Dimensions and Units. 1.4 Symbols and Notation. 1.5 Symbols Versus Numbers. 1.6 Presentation of Calculations. 1.7 Approximations. 1.8 Precision and Tolerance. 1.9 Engineering Notation. 1.10 Problems. 2 Current, Voltage, and Resistance. 2.1 Charge and Current. 2.2 Electric Field. 2.3 Electric Potential and Voltage. 2.4 Ohm¿s Law and Resistance. 2.5 Resistivity. 2.6 Conductance and Conductivity. 2.7 Resistors. 2.8 E Series, Tolerance, and Standard Resistance Values. 2.9 Resistor Marking. 2.10 Variation of Resistivity and Resistance with Temperature. 2.11 American Wire Gauge (AWG) and Metric Wire Gauge (MWG). 2.12 DC and AC. 2.13 Skin Effect and Proximity Effect. 2.14 Concluding Remark. 2.15 Problems. 3 Circuit Elements, Circuit Diagrams, and Kirchhoff¿s Laws. 3.1 Schematics and Circuit Diagrams. 3.2 Conductors and Connections. 3.3 Annotating Circuit Diagrams. 3.4 Series and Parallel Connections. 3.5 Open Circuits and Short Circuits. 3.6 Basic Circuit Elements: Resistors and Independent Sources. 3.7 Kirchhoff¿s Current Law and Node Analysis. 3.8 Kirchhoff¿s Voltage Law and Mesh Analysis. 3.9 Voltage and Current Dividers. 3.10 Superposition. 3.11 Problems. 4 Equivalent Circuits. 4.1 Terminal Characteristics. 4.2 Equivalent Circuits. 4.3 Source Transformations. 4.4 The´venin and Norton Equivalent Circuits. 4.5 Notation: Constant and Time-Varying Current and Voltage. 4.6 Signii¬cance of Terminal Characteristics and Equivalence. 4.7 Problems. 5 Work and Power. 5.1 Instantaneous Power and the Passive Sign Convention. 5.2 Instantaneous Power Dissipated by a Resistor: Joule¿s Law. 5.3 Conservation of Power. 5.4 Peak Power. 5.5 Available Power. 5.6 Time Averages. 5.7 Average Power. 5.8 Root Mean Squared (RMS) Amplitude of a Current or Voltage. 5.9 Average Power Dissipated in a Resistive Load. 5.10 Summary: Power Relations. 5.11 Notation. 5.12 Measurement of RMS Amplitude. 5.13 Dissipation Derating. 5.14 Power Dissipation in Physical Components and Circuits. 5.15 Active and Passive Devices, Loads, and Circuits. 5.16 Power Transfer and Power Transfer Efi¬ciency. 5.17 Superposition of Power. 5.18 Problems. 6 Dependent Sources and Unilateral Two-Port Circuits. 6.1 Input Resistance and Output Resistance. 6.2 Dependent Sources. 6.3 Linear Two-Port Models. 6.4 Two-Ports in Cascade. 6.5 Voltage, Current, and Power Transfer. 6.6 Transfer Characteristics, Transfer Ratios, and Gain. 6.7 Power Gain. 6.8 Gains and Relative Values in Decibels (dB). 6.9 Design Considerations. 6.10 Problems. 7 Operational Amplii¬ers I. 7.1 Operational Amplii¬er Terminals and Voltage Reference. 7.2 DC Circuit Model for an Op Amp. 7.3 The Ideal Op Amp and Some Basic Op-Amp Circuits at DC. 7.4 Feedback and Stability of Op-Amp Circuits. 7.5 Input Resistance and Output Resistance of Op-Amp Circuits. 7.6 Properties of Common Op-Amp Circuits. 7.7 Op Amp Structure and Properties. 7.8 Output Current Limit. 7.9 Input Offset Voltage. 7.10 Input Bias Currents. 7.11 Power Dissipation in Op Amps and Op-Amp Circuits. 7.12 Design Considerations. 7.13 Problems. 8 Capacitance. 8.1 Capacitance. 8.2 Capacitors. 8.3 Terminal Characteristics of an Ideal Capacitor. 8.4 Charge-Discharge Time Constant. 8.5 Capacitors in Series and Parallel. 8.6 Leakage Resistance. 8.7 Stray and Parasitic Capacitance; Capacitive Coupling. 8.8 Variation of Capacitance with Temperature. 8.9 Energy Storage and Power Dissipation in a Capacitor. 8.10 Applications. 8.11 Problems. 9 Inductance. 9.1 Magnetic Field. 9.2 Self Inductance. 9.3 Inductance of Air-Core Coils. 9.4 Inductors. 9.5 Terminal Characteristic of an Inductor. 9.6 Time Constant. 9.7 Inductors in Series and Parallel. 9.8 Energy Storage and Power dissipation in an Inductor. 9.9 Parasitic Self-Inductance. 9.10 Reducing Ripple. 9.11 Inductive Kick. 9.12 Magnetically Coupled Coils and Mutual Inductance. 9.13 Parasitic Mutual Inductance. 9 ...