0

Dynamical Phenomena at Surfaces, Interfaces and Superlattices

Proceedings of an International Summer School at the Ettore Majorana Centre, Erice, Italy, July 1-13,1984, Springer Series in Surface Sciences 3

Erschienen am 30.01.2012, 1. Auflage 1985
106,99 €
(inkl. MwSt.)

Lieferbar innerhalb ca. 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783642825378
Sprache: Englisch
Umfang: xiii, 329 S.
Einband: kartoniertes Buch

Beschreibung

This volume contains summaries of lectures and contributed papers delivered at an International Summer School on "Dynamical Phenomena at Surfaces, I nterfaces and Superl atti ces" hel d at the Ettore Maj orana Centre for Sci en­ tific Culture, Erice (Sicily), Italy, July 1-13, 1984. The School was orga­ ni zed under the auspi ces of the Surfaces and Interfaces Secti on of the Condensed Matter Division of the European Physical Society as the sixth course in the series on Materials Science and Technology. Approximately 60 parti c i pants from all regi ons of Europe, the Uni ted States, and further afield - Hong Kong, China, India - were able to take part in a program of 45 lectures and 11 contributed talks, which covered most of the solid-state aspects of the subject. In recent years, there has been an explosion of interest in the proper­ ties of carefully prepared surfaces, interfaces, and multilayer thin films. This advance in research has received its impetus from the technological re­ levance of surfaces and interfacial phenomena associated with heterogeneous catalysis, corrosion, and, particularly, new developments in microelectronics. One of the most important developments to emerge over the past decade has been our ability to prepare ultra-thin structures at the submicron level, i. e., to engineer low-dimensional solids at the atomic-scale level.

Leseprobe

InhaltsangabeI Structure.- 1. Structural Determination of Surfaces and Overlayers with Diffraction Methods (With 7 Figures).- 1.1 Introduction.- 1.2 Surface Diffraction Kinematics.- 1.3 Low-Energy Electron Diffraction (LEED).- 1.4 Reflection High-Energy Electron Diffraction (RHEED).- 1.5 Photoelectron Diffraction.- 1.6 Glancing Incidence X-Ray Diffraction.- 1.7 Atomic-Beam Diffraction.- References.- 2. Defects at Surfaces (With 17 Figures).- 2.1 Introduction.- 2.2 Systematic Description of Defects.- 2.3 Experimental Techniques.- 2.4 Schematic Description of Quantitative Evaluation.- 2.5 The Kinematic Approximation and Inclusion of Dynamic Effects.- 2.6 Instrumental Limitations.- 2.7 Examples.- 2.8 Conclusion.- References.- 3. Metal-Metal Superlattices (With 11 Figures).- 3.1 Introduction to Metal-Metal Superlattices.- 3.2 Preparation of Metallic Superlattices by Sputtering.- 3.3 Characterization.- 3.3.1 Rutherford Backscattering Spectroscopy (RBS).- 3.3.2 X-Ray Diffraction.- 3.3.3 Auger Electron Spectroscopy (AES).- 3.4 Summary.- References.- 4. Advances in Semiconductor Superlattices, Quantum Wells and Heterostructures.- 4.1 Superlattice Band Model and Experiment (1969-1972).- 4.2 Multibarrier Tunneling and Quantum Wells: Theory and Experiment (1973-1974).- 4.3 Optical Absorption for Quantum Wells and Superlattices (1974-1975).- 4.4 Raman Scattering (1976-1980).- 4.5 Modulation Doping (1978) and Subsequent Developments.- 4.6 Quantized Hall Effect (1980-1981) and Discovery of Fractional Filling (1982).- 4.7 Variety of Heterojunctions and Superlattices and Relevant Topics.- 4.8 In As-GaSb Superlattices (1977-1982) and Quantum Wells (1982-).- References.- Contributions.- Electronic Surface Transitions in Si(111)2 ×1 Studied by Polarized Light (With 2 Figures).- Short Range Bonding Interaction at Metal-Metal Interfaces (With 2 Figures).- II Lattice Dynamics.- 5. Phonons at Interfaces and Superlattices (With 8 Figures).- 5.1 Introduction.- 5.2 Interface Lattice Dynamics.- 5.3 Dynamics of Superlattices.- 5.3.1 Compositional Superlattices.- 5.3.2 Doping Superlattices.- References.- 6. Pseudopotentials and Dynamical Properties of Metallic Surfaces (With 3 Figures).- 6.1 Introduction.- 6.2 Total Energy.- 6.2.1 Bulk Case.- 6.2.2 Surface Case.- 6.3 Determination of the Selfconsistent Potential.- 6.4 Dynamical Matrix.- 6.5 Applications.- 6.6 Conclusions.- References.- 7. One-Phonon Scattering of He Atoms from the Ag (111) Surface (With 6 Figures).- 7.1 Introduction.- 7.2 DWBA Cross-Section.- 7.3 Atom-Surface Potential.- 7.4 Calculation for the (111) Surface.- References.- 8. Electron Energy-Loss Spectroscopy for Metal Surfaces (With 9 Figures).- 8.1 Introduction.- 8.2 Dipole Scattering.- 8.2.1 Dipole EELS in Nickel (111).- 8.2.2 Dipole EELS in Nickel (001).- 8.3 Impact Scattering.- References.- 9. Electron Energy-Loss Spectroscopy of Surfaces and Absorbates (With 5 Figures).- 9.1 Introduction.- 9.2 Electron Energy-Loss Spectroscopy.- 9.3 Application to Oxidation Processes.- 9.4 Bonding of Hydrocarbons on Transition Metals.- 9.5 Surface Phonons.- References.- Contributions.- High Resolution Inelastic He-Atom Scattering from Crystal Surfaces (With 3 Figures).- Surface Lattice Dynamics of Ordered Overlayers on Metals.- Bulk and Surface Phonons in Superlattices.- III Phase Transitions.- 10. Surface Reconstruction Phase Transformations (With 17 Figures).- 10.1 Introduction.- 10.2 Landau Theory of Structural Phase Transformations.- 10.2.1 Order-Disorder Transitions at Surfaces: Critical Exponents.- 10.2.2 Classification of the Au(110)(2 ×l) Order-Disorder Transition.- 10.2.3 Leed Spot-Profile Analysis of Au(110) (2 ×l) Phase Transition.- 10.2.4 X-Y Model with Cubic Anisotropy W(100)(?2×?2).- 10.3 Landau Theory of Incommensurate Surface Phases.- 10.3.1 'Soliton Superlattice' Structure of Incommensurate Phase.- 10.3.2 Incommensurate Phase Fluctuations.- 10.4 Related Systems.- 10.4.1 Au, Ir, pt(100) and Au (111) Reconstructed Surfaces.- 10.4.2 Semiconductor R