0

Theory of Porous Media

Highlights in Historical Development and Current State

Erschienen am 18.09.2011, 1. Auflage 2000
53,49 €
(inkl. MwSt.)

Lieferbar innerhalb ca. 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783642640629
Sprache: Englisch
Umfang: xvi, 618 S.
Einband: kartoniertes Buch

Beschreibung

Inhaltsangabe1 Introduction.- 2 The Early Era.- 2.1 The Development of the Principles of Mechanics.- 2.2 The Dynamics of Rigid Bodies.- 2.3 The Theory of Ideal Fluids.- 2.4 Euler's Description of a Porous Body.- 2.5 Coulomb's Earth Pressure Theory.- 2.6 Woltman's Contribution to the Porous Media Theory: The Introduction of the Angle of Internal Friction and the Volume Fraction Concept.- 2.7 Concluding Remarks.- 2.8 Biographical Notes.- 3 The Classical Era.- 3.1 Cauchy's Formulation of the Stress Concept.- 3.1.1 Cauchy's Predecessors.- 3.1.2 The Final Step.- 3.1.3 Biographical notes.- 3.2 The Development of the Linear Elasticity Theory.- 3.2.1 Theoretical Molecular Formulations.- 3.2.2 Continuum Mechanics Approach.- 3.2.3 Completion of the Theory.- 3.2.4 Some Solutions of the Fundamental Equations.- 3.2.5 Final Remarks.- 3.2.6 Biographical Notes.- 3.3 Discovery of Fundamental Laws (Delesse, Fick, Darcy).- 3.3.1 The Delessian Law.- 3.3.2 Fick'sLaw.- 3.3.3 Darcy's Law.- 3.3.4 Biographical Notes.- 3.4 The Development of the Theory of Viscous Fluids.- 3.4.1 Introduction: The Navier-Stokes Equations.- 3.4.2 The Historical Development of the Theory.- 3.4.3 Biographical Notes.- 3.5 The Mohr-Coulomb Failure Condition and other Plasticity Theory Studies.- 3.5.1 W.J. Macquorn Rankine's Fundamental Failure Condition for Granular Material.- 3.5.2 O. Mohr's Contributions to the Determination of the Elasticity and Failure Limits.- 3.5.3 Extension of the Plasticity Theory.- 3.5.4 Biographical Notes.- 3.6 Motion of Liquids in Rigid Porous Solids.- 3.6.1 Motion of Liquids Through Narrow Tubes.- 3.6.2 Flow of a Liquid Through Porous Bodies with Statistically-Distributed Pores.- 3.6.3 Application.- 3.7 Foundation of the Mixture Theory.- 3.7.1 Introduction.- 3.7.2 Stefan's Development of the Mixture Theory.- 3.7.3 Biographical notes.- 3.8 The Foundation of Thermodynamics.- 3.8.1 Development in the Early Days.- 3.8.2 The Achievements of Carnot (1796-1832) and Clapeyron (1799-1864).- 3.8.3 Robert Mayer, the Discoverer of the Mechanical Equivalent of Heat.- 3.8.4 The Contributions of Mohr, Seguin, Colding, Holtzmann, and Helmholtz.- 3.8.5 The Decisive Investigations of Joule.- 3.8.6 The Foundation of Thermodynamics by Clausius, Rankine and Thomson.- 3.8.7 Discussions on the Correct Form of the Mechanical Theory of Heat and Further Developments.- 3.8.8 Biographical Notes.- 4 The Modern Era.- 4.1 Discovery of Fundamental Effects of Liquid-Saturated Rigid Porous Solids.- 4.2 The Treatment of the Liquid-Saturated Deformable Porous Solid by von Terzaghi.- 4.3 The Foundation of Modern Porous Media Theory by Fillunger.- 4.4 The Tragic Controversy Between the Viennese Professors Fillunger and von Terzaghi in 1936/37.- 4.5 The Further Development of the Viennese Affair and in Soil Mechanics.- 4.6 Biographical Notes.- 4.7 The Followers of von Terzaghi and Fillunger: Biot, Heinrich and Frenkel.- 4.7.1 Biot's Theory.- 4.7.2 Heinrich's Theory.- 4.7.3 Frenkel's Description of Moist Soil.- 4.7.4 Further Developments.- 4.7.5 Biographical Notes.- 4.8 Further Development of the Elasticity and Plasticity Theories.- 4.8.1 Elasticity Theory.- 4.8.2 Plasticity Theory.- 4.9 Modern Continuum Mechanics and Mixture Theory.- 4.10 Theories of Immiscible Mixtures.- 5 Current State of Porous Media Theory.- 5.1 Introductory Remarks to Porous Media Theory.- 5.2 The Volume Fraction Concept.- 5.3 Kinematics.- 5.4 Balance Equations.- 5.4.1 Balance of Mass.- 5.4.2 Balance of Momentum and Moment of Momentum.- 5.4.3 Balance of Energy.- 5.5 Entropy Inequality.- 5.6 The Closure Problem and the Saturation Constraint.- 5.7 Principle of Virtual Work.- 5.8 Constitutive Theory.- 5.8.1 Principle of Material Objectivity.- 5.8.2 The Introduction and Evaluation of the Entropy Inequality for a General Binary Porous Medium Model.- a) The Introduction and Evaluation of the Entropy Inequality for a Binary Porous Medium Model with Incompressible Constituents.- b) The Introduction and Evaluation of the Entropy Inequ

Autorenportrait

Inhaltsangabe1 Introduction.- 2 The Early Era.- 2.1 The Development of the Principles of Mechanics.- 2.2 The Dynamics of Rigid Bodies.- 2.3 The Theory of Ideal Fluids.- 2.4 Euler's Description of a Porous Body.- 2.5 Coulomb's Earth Pressure Theory.- 2.6 Woltman's Contribution to the Porous Media Theory: The Introduction of the Angle of Internal Friction and the Volume Fraction Concept.- 2.7 Concluding Remarks.- 2.8 Biographical Notes.- 3 The Classical Era.- 3.1 Cauchy's Formulation of the Stress Concept.- 3.1.1 Cauchy's Predecessors.- 3.1.2 The Final Step.- 3.1.3 Biographical notes.- 3.2 The Development of the Linear Elasticity Theory.- 3.2.1 Theoretical Molecular Formulations.- 3.2.2 Continuum Mechanics Approach.- 3.2.3 Completion of the Theory.- 3.2.4 Some Solutions of the Fundamental Equations.- 3.2.5 Final Remarks.- 3.2.6 Biographical Notes.- 3.3 Discovery of Fundamental Laws (Delesse, Fick, Darcy).- 3.3.1 The Delessian Law.- 3.3.2 Fick'sLaw.- 3.3.3 Darcy's Law.- 3.3.4 Biographical Notes.- 3.4 The Development of the Theory of Viscous Fluids.- 3.4.1 Introduction: The Navier-Stokes Equations.- 3.4.2 The Historical Development of the Theory.- 3.4.3 Biographical Notes.- 3.5 The Mohr-Coulomb Failure Condition and other Plasticity Theory Studies.- 3.5.1 W.J. Macquorn Rankine's Fundamental Failure Condition for Granular Material.- 3.5.2 O. Mohr's Contributions to the Determination of the Elasticity and Failure Limits.- 3.5.3 Extension of the Plasticity Theory.- 3.5.4 Biographical Notes.- 3.6 Motion of Liquids in Rigid Porous Solids.- 3.6.1 Motion of Liquids Through Narrow Tubes.- 3.6.2 Flow of a Liquid Through Porous Bodies with Statistically-Distributed Pores.- 3.6.3 Application.- 3.7 Foundation of the Mixture Theory.- 3.7.1 Introduction.- 3.7.2 Stefan's Development of the Mixture Theory.- 3.7.3 Biographical notes.- 3.8 The Foundation of Thermodynamics.- 3.8.1 Development in the Early Days.- 3.8.2 The Achievements of Carnot (1796-1832) and Clapeyron (1799-1864).- 3.8.3 Robert Mayer, the Discoverer of the Mechanical Equivalent of Heat.- 3.8.4 The Contributions of Mohr, Seguin, Colding, Holtzmann, and Helmholtz.- 3.8.5 The Decisive Investigations of Joule.- 3.8.6 The Foundation of Thermodynamics by Clausius, Rankine and Thomson.- 3.8.7 Discussions on the Correct Form of the Mechanical Theory of Heat and Further Developments.- 3.8.8 Biographical Notes.- 4 The Modern Era.- 4.1 Discovery of Fundamental Effects of Liquid-Saturated Rigid Porous Solids.- 4.2 The Treatment of the Liquid-Saturated Deformable Porous Solid by von Terzaghi.- 4.3 The Foundation of Modern Porous Media Theory by Fillunger.- 4.4 The Tragic Controversy Between the Viennese Professors Fillunger and von Terzaghi in 1936/37.- 4.5 The Further Development of the Viennese Affair and in Soil Mechanics.- 4.6 Biographical Notes.- 4.7 The Followers of von Terzaghi and Fillunger: Biot, Heinrich and Frenkel.- 4.7.1 Biot's Theory.- 4.7.2 Heinrich's Theory.- 4.7.3 Frenkel's Description of Moist Soil.- 4.7.4 Further Developments.- 4.7.5 Biographical Notes.- 4.8 Further Development of the Elasticity and Plasticity Theories.- 4.8.1 Elasticity Theory.- 4.8.2 Plasticity Theory.- 4.9 Modern Continuum Mechanics and Mixture Theory.- 4.10 Theories of Immiscible Mixtures.- 5 Current State of Porous Media Theory.- 5.1 Introductory Remarks to Porous Media Theory.- 5.2 The Volume Fraction Concept.- 5.3 Kinematics.- 5.4 Balance Equations.- 5.4.1 Balance of Mass.- 5.4.2 Balance of Momentum and Moment of Momentum.- 5.4.3 Balance of Energy.- 5.5 Entropy Inequality.- 5.6 The Closure Problem and the Saturation Constraint.- 5.7 Principle of Virtual Work.- 5.8 Constitutive Theory.- 5.8.1 Principle of Material Objectivity.- 5.8.2 The Introduction and Evaluation of the Entropy Inequality for a General Binary Porous Medium Model.- a) The Introduction and Evaluation of the Entropy Inequality for a Binary Porous Medium Model with Incompressible Constituents.- b) The Introduction and Evaluation of the Entropy Inequ