0

Urlaub

Wir machen Urlaub vom 25.12. bis zum 2.1.
In dieser Zeit ist die Buchhandlung im Fedelhören geschlossen, Bestellungen werden nicht bearbeitet oder versendet und wir sind per Telefon und Mail nicht erreichbar. Ab dem 3.1. holen wir dann alles nach, was wir verpasst haben.

Machine Learning for Text

Erschienen am 05.05.2022, 2. Auflage 2022
80,24 €
(inkl. MwSt.)

Lieferbar innerhalb ca. 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783030966225
Sprache: Englisch
Umfang: xxiii, 565 S., 87 s/w Illustr., 5 farbige Illustr.
Einband: gebundenes Buch

Beschreibung

This second edition textbook covers a coherently organized framework for text analytics, which integrates material drawn from the intersecting topics of information retrieval, machine learning, and natural language processing. Particular importance is placed on deep learning methods. The chapters of this book span three broad categories:1. Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for text analytics such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.2. Domain-sensitive learning and information retrieval: Chapters 8 and 9 discuss learning models in heterogeneous settings such as a combination of text with multimedia or Web links. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. 3. Natural language processing: Chapters 10 through 16 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, transformers, pre-trained language models, text summarization, information extraction, knowledge graphs, question answering, opinion mining, text segmentation, and event detection. Compared to the first edition, this second edition textbook (which targets mostly advanced level students majoring in computer science and math) has substantially more material on deep learning and natural language processing. Significant focus is placed on topics like transformers, pre-trained language models, knowledge graphs, and question answering.

Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg

Autorenportrait

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.D. in Operations Research from the Massachusetts Institute of Technology in 1996. He has published more than 400 papers in refereed conferences and journals, and has applied for or been granted more than 80 patents. He is author or editor of 20 books, including textbooks on linear algebra, machine learning (for text), neural networks, recommender systems, and outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He has received several internal and external awards, including the EDBT Test-of-Time Award (2014), the ACM SIGKDD Innovation Award (2019), and the IEEE ICDM Research Contributions Award (2015). He is also a recipient of the W. Wallace McDowell Award, which is the highest technical honor given by IEEE Computer Society in the field of computer science. He has served as an editor-in-chief of the ACM SIGKDD Explorations. He is currently serving as the editor-in-chief of the ACM Transactions on Knowledge Discovery from Data and as an editor-in-chief of ACM Books. He is a fellow of the SIAM, ACM, and the IEEE, for "contributions to knowledge discovery and data mining algorithms."

Weitere Artikel vom Autor "Aggarwal, Charu C"

Alle Artikel anzeigen