0

Fractals: Theory and Applications in Engineering

Erschienen am 16.09.2011, 1. Auflage 1999
106,99 €
(inkl. MwSt.)

Lieferbar innerhalb ca. 1 - 3 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9781447112259
Sprache: Englisch
Umfang: viii, 345 S.
Einband: kartoniertes Buch

Beschreibung

InhaltsangabeLocally Self Similar Processes.- From Self-Similarity to Local Self-Similarity: the Estimation Problem.- Generalized Multifractional Brownian Motion: Definition and Preliminary Results.- Elliptic Self Similar Stochastic Processes.- Wavelets for Scaling Processes.- Multifractal Analysis.- Classification of Natural Texture Images from Shape Analysis of the Legendre Multifractal Spectrum.- A Generalization of Multifractal Analysis Based on Polynomial Expansions of the Generating Function.- Local Effective Holder Exponent Estimation on the Wavelet Transform Maxima Tree.- Easy and Natural Generation of Multifractals: Multiplying Harmonics of Periodic Functions.- IFS.- IFS-Type Operators on Integral Transforms.- Comparison of Dimensions of a Self-Similar Attractor.- Fractional Calculus.- Vector Analysis on Fractal Curves.- Local Fractional Calculus: a Calculus for Fractal Space-Time.- Physical Sciences.- Conformal Multifractality of Random Walks, Polymers, and Percolation in Two Dimensions.- Fractal Pores and Fractal Tunnels: Traps for "Particles" or "Sound Particles".- Fractal Pores and the Degradation of Shales.- Continuous Wavelet Transform Analysis of Fractal Superlattices.- Chemical Engineering.- Mixing in Laminar Chaotic Flows: Differentiate Structures and Multifractal Features.- Adhesion AFM Applied to Lipid Monolayers. A Fractal Analysis.- Image Compression.- Faster Fractal Image Coding Using Similarity Search in a KL-transformed Feature Space.- Can One Break the "Collage Barrier" in Fractal Image Coding?.- Two Algorithms for Non-Separable Wavelet Transforms and Applications to Image Compression.

Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg