0

Broadband Access

eBook - Wireline and Wireless - Alternatives for Internet Services

Starr, Thomas/Galli, Stefano/Raghavan, Arvind et al
Erschienen am 07.03.2014, 1. Auflage 2014
90,99 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9781118878804
Sprache: Englisch
Umfang: 448 S., 12.06 MB
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

Written by experts in the field, this book provides an overview of all forms of broadband subscriber access networks and technology, including fiber optics, DSL for phone lines, DOCSIS for coax, power line carrier, and wireless. Each technology is described in depth, with a discussion of key concepts, historical development, and industry standards. The book contains comprehensive coverage of all broadband access technologies, with a section each devoted to fiber-based technologies, non-fiber wired technologies, and wireless technologies. The four co-authors breadth of knowledge is featured in the chapters comparing the relative strengths, weaknesses, and prognosis for the competing technologies.

Key Features:

Covers the physical and medium access layers (OSI Layer 1 and 2), with emphasis on access transmission technologyCompares and contrasts all recent and emerging wired and wireless standards for broadband access in a single referenceIllustrates the technology that is currently being deployed by network providers, and also the technology that has recently been or will soon be standardized for deployment in the coming years, including vectoring, wavelength division multiple access, CDMA, OFDMA, and MIMOContains detailed discussion on the following standards: 10G-EPON, G-PON, XG-PON, VDSL2, DOCSIS 3.0, DOCSIS Protocol over EPON, power line carrier, IEEE 802.11 WLAN/WiFi, UMTS/HSPA, LTE, and LTE-Advanced

Autorenportrait

Dr Steven Gorshe, PMC-Sierra, Inc., USA
Steven Gorshe received his B.S.E.E. degree from the University of Idaho in 1979 and his M.S.E.E. and Ph.D. degrees from Oregon State University in 1982 and 2002.

Dr Arvind Raghavan, AT&T Labs, Inc., USA
Arvind Raghavan is a Principal Member of Technical Staff at AT&T Labs.

Mr Thomas Starr, AT&T Labs, Inc., USA
Thomas Starr holds a MS degree in Computer Science and a BS degree in Computer Engineering from the University of Illinois in Urbana.

Dr Stefano Galli, Panasonic, USA
Stefano Galli received his M.S. degree and Ph.D. in Electrical Engineering from the University of Rome "La Sapienza" (Italy) in 1994 and 1998, respectively.

Inhalt

About the Authors xv

Acknowledgments xvii

List of Abbreviations and Acronyms xix

1 Introduction to Broadband Access Networks and Technologies 1

1.1 Introduction 1

1.2 A Brief History of the Access Network 2

1.3 Digital Subscriber Lines (DSL) 3

1.3.1 DSL Technologies and Their Evolution 3

1.3.2 DSL System Technologies 5

1.4 Hybrid Fiber-Coaxial Cable (HFC) 5

1.5 Power Line Communications (PLC) 6

1.6 Fiber in the Loop (FITL) 7

1.7 Wireless Broadband Access 10

1.8 Direct Point-to-Point Connections 12

Appendix 1.A: Voiceband Modems 12

2 Introduction to Fiber Optic Broadband Access Networks and Technologies 15

2.1 Introduction 15

2.2 A Brief History of Fiber in the Loop (FITL) 16

2.3 Introduction to PON Systems 18

2.3.1 PON System Overview 18

2.3.2 PON Protocol Evolution 19

2.4 FITL Technology Considerations 21

2.4.1 Optical Components 21

2.4.2 Powering the Loop 22

2.4.3 System Power Savings 23

2.4.4 PON Reach Extension 25

2.5 Introduction to PON Network Protection 30

2.5.1 Background on Network Protection 31

2.5.2 PON Facility Protection 31

2.5.3 OLT Function Protection 35

2.5.4 ONU Protection 40

2.5.5 Conclusions Regarding Protection 42

2.6 Conclusions 42

Appendix 2.A: Subscriber Power Considerations 43

References 43

Further Reading 43

3 IEEE Passive Optical Networks 45

3.1 Introduction 45

3.2 IEEE 802.3ah Ethernet-based PON (EPON) 45

3.2.1 EPON Physical Layer 46

3.2.2 Signal Formats 46

3.2.3 MAC Protocol 48

3.2.4 Encryption and Security 49

3.2.5 Forward Error Correction (FEC) 50

3.2.6 ONU Discovery and Activation 51

3.2.7 ONU Ranging Mechanism 52

3.2.8 EPON OAM 52

3.2.9 Dynamic Bandwidth Assignment (DBA) 53

3.3 IEEE 802.3av 10Gbit/s Ethernet-based PON (10G EPON) 54

3.3.1 10G EPON Physical Layer 54

3.3.2 Signal Format 58

3.3.3 MAC Protocol 59

3.3.4 Forward Error Correction 59

3.3.5 ONU Discovery and Activation 61

3.3.6 ONU Ranging Mechanism 61

3.3.7 10G EPON OAM 61

3.3.8 Dynamic Bandwidth Allocation 61

3.4 Summary Comparison of EPON and 10G EPON 61

3.5 Transport of Timing and Synchronization over EPON and 10G EPON 61

3.6 Overview of the IEEE 1904.1 Service Interoperability in Ethernet Passive Optical Networks (SIEPON) 63

3.6.1 SIEPON MAC Functional Blocks 65

3.6.2 VLAN Support 67

3.6.3 Multicast Service 67

3.6.4 SIEPON Service Management 67

3.6.5 Performance Monitoring and Verification 69

3.6.6 SIEPON Service Availability 70

3.6.7 SIEPON Optical Link Protection 70

3.6.8 SIEPON Power Savings 70

3.6.9 SIEPON Security Mechanisms 71

3.6.10 SIEPON Management 71

3.7 ITU-T G.9801 Ethernet Passive Optical Networks using OMCI 71

3.8 Conclusions 71

Appendix 3.A: 64B/66B Line Code 72

References 75

Further Readings 75

4 ITU-T/FSAN PON Protocols 77

4.1 Introduction 77

4.2 ITU-T G.983 Series B-PON (Broadband PON) 78

4.3 ITU-T G.984 Series G-PON (Gigabit-capable PON) 79

4.3.1 G-PON Physical Layer 79

4.3.2 G-PON Frame Formats 81

4.3.3 G-PON Encapsulation Method (GEM) 87

4.3.4 G-PON Multiplexing 91

4.3.5 Encryption and Security 92

4.3.6 Forward Error Correction 92

4.3.7 Protection Switching 94

4.3.8 ONU Activation 94

4.3.9 Ranging Mechanism 95

4.3.10 Dynamic Bandwidth Assignment (DBA) 96

4.3.11 OAM Communication 97

4.3.12 Time of Day Distribution 97

4.3.13 G-PON Enhancements 101

4.4 Next Generation PON (NG-PON) 101

4.4.1 Introduction to G.987 series XG-PON (NG-PON1 10Gbit-capable PON) 102

4.4.2 XG-PON Physical Layer 102

4.4.3 XG-PON Transmission Convergence Layer and Frame Structures 105

4.4.4 Forward Error Correction 108

4.4.5 XG-PON Encapsulation Method (XGEM) 109

4.4.6 XG-PON Management 110

4.4.7 XG-PON Security 110

4.4.8 NG-PON2 40 Gbit/s Capable PON 110

Appendix 4.A: Summary Comparison of EPON and G-PON 112

References 113

Further Readings 114

5 Optical Domain PON Technologies 115

5.1 Introduction 115

5.2 WDMA (Wavelength Division Multiple Access) PON 115

5.2.1 Overview 115

5.2.2 Technologies 116

5.2.3 Applications 120

5.3 CDMA PON 120

5.4 Point-to-Point Ethernet 122

5.5 Subcarrier Multiplexing and OFDM 123

5.5.1 Introduction 123

5.5.2 OFDMA PON 123

5.6 Conclusions 125

References 126

Further Readings 126

6 Hybrid Fiber Access Technologies 127

6.1 Introduction and Background 127

6.2 Evolution of DOCSIS (Data-Over-Cable Service Interface Specification) to Passive Optical Networks 127

6.2.1 Introduction and Background 127

6.2.2 DOCSIS Provisioning of EPON (DPoE) 128

6.2.3 Conclusions for DPoE 135

6.3 Radio and Radio Frequency Signals over Fiber 135

6.3.1 Radio over Fiber (RoF) 136

6.3.2 Baseband Digital Radio Fiber Interfaces 136

6.3.3 Radio Frequency over Glass (RFoG) 138

6.4 IEEE 802.3bn Ethernet Protocol over Coaxial Cable (EPoC) 140

6.5 Conclusions 140

References 141

Further Readings 141

7 DSL Technology Broadband via Telephone Lines 143

7.1 Introduction to DSL 143

7.2 DSL Compared to Other Access Technologies 144

7.2.1 Security and Reliability 144

7.2.2 Point-to-Point Versus Shared Access 145

7.2.3 Common Facilities for Voice and DSL 146

7.2.4 Bit-rate Capacity 146

7.2.5 Hybrid Access 146

7.2.6 Future Trends for DSL Access 146

7.3 DSL Overview 147

7.3.1 Voice-band Modems 147

7.3.2 The DSL Concept 147

7.3.3 DSL Terminology 149

7.3.4 Introduction to DSL Types 151

7.3.5 DSL Performance Improvement, Repeaters, and Bonding 152

7.3.6 Splitters and Filters for Voice and Data 153

7.3.7 Other Ways to Convey Voice and Data 155

7.4 Transmission Channel and Impairments 156

7.4.1 Signal Attenuation 158

7.4.2 Bridged Taps 159

7.4.3 Loading Coils 162

7.4.4 Return Loss and Insertion Loss 163

7.4.5 Balance 163

7.4.6 Intersymbol Interference (ISI) 163

7.4.7 Noise 164

7.4.8 Transmission Channel Models 170

7.5 DSL Transmission Techniques 170

7.5.1 Duplexing 170

7.5.2 Channel Equalization and Related Techniques 171

7.5.3 Coding 172

References 174

Further Readings 174

8 The Family of DSL Technologies 175

8.1 ADSL 175

8.1.1 G.lite 176

8.1.2 ADSL2 and ADSL2plus 177

8.1.3 ADSL1 and ADSL2plus Performance 178

8.2 VDSL 179

8.2.1 VDSL2 181

8.2.2 VDSL2 Performance 182

8.3 Basic Rate Interface ISDN 184

8.4 HDSL, HDSL2, and HDLS4 185

8.5 SHDSL 185

8.6 G.fast (FTTC DSL) 187

Reference 188

9 Advanced DSL Techniques and Home Networking 189

9.1 Repeaters and Bonding 189

9.2 Dynamic Spectrum Management (DSM) 190

9.3 Vectored Transmission 190

9.4 Home Networking 195

References 195

Further Readings 195

10 DSL Standards 197

10.1 Spectrum Management ANSI T1.417 197

10.2 G.hs ITU-T Rec. G.994.1 199

10.3 PLOAM ITU-T Rec. G.997.1 200

10.4 G.bond ITU-T Recs. G.998.1, G.998.2, and G.998.3 201

10.5 G.test ITU-T Rec. G.996.1 202

10.6 G.lt ITU-T Rec. G.996.2 202

10.7 Broadband Forum DSL Testing Specifications 203

10.8 Broadband Forum TR-069 Remote Management of CPE 204

References 205

11 The DOCSIS (Data-Over-Cable Service Interface Specification) Protocol 207

11.1 General Introduction 207

11.2 Introduction to MSO Networks 207

11.3 Background on Hybrid Fiber Coax (HFC) Networks 208

11.4 Introduction to DOCSIS 210

11.5 DOCSIS Network Elements 210

11.5.1 CMTS (Cable Modem Terminating System) 211

11.5.2 CM (Cable Modem) 212

11.5.3 FN (Fiber Node) 213

11.5.4 RF Combiner Shelf 213

11.6 Brief History of the DOCSIS Protocol Evolution 213

11.6.1 DOCSIS 1.0 214

11.6.2 DOCSIS 1.1 214

11.6.3 DOCSIS 2.0 214

11.6.4 DOCSIS 3.0 215

11.6.5 Regional History and Considerations 215

11.7 DOCSIS Physical Layer 216

11.7.1 DOCSIS Downstream Transmission 216

11.7.2 DOCSIS Upstream Transmission 218

11.8 Synchronization and Ranging 222

11.8.1 Synchronization 223

11.8.2 Ranging 224

11.9 DOCSIS MAC Sub-Layer 226

11.9.1 Downstream MAC 227

11.9.2 Upstream MAC 228

11.9.3 MAC Management Messages 232

11.9.4 MAC Parameters 233

11.10 CM Provisioning 239

11.11 Security 240

11.12 Introduction to Companion Protocols 242

11.12.1 The PacketCableTM Protocol 242

11.12.2 The OpenCableTM Protocol 242

11.12.3 PacketCable Multimedia (PCMM) 242

11.13 Conclusions 243

References 243

Further Readings 243

12 Broadband in Gas Line (BIG) 245

12.1 Introduction to BIG 245

12.2 Proposed Technology 245

12.3 Potential Drawbacks for BIG 245

12.4 Broadband Sewage Line 247

Reference 247

13 Power Line Communications 249

13.1 Introduction 249

13.2 The Early Years 250

13.3 Narrowband PLC 251

13.3.1 Overview of NB-PLC Standards 252

13.4 Broadband PLC 253

13.4.1 Overview of BB-PLC Standards 254

13.5 Power Grid Topologies 257

13.5.1 Outdoor Topologies: HV, MV, and LV 257

13.5.2 Indoor Topologies 258

13.6 Outdoor and In-Home Channel Characterization 261

13.6.1 Characteristics of the HV Power Line Channel 262

13.6.2 Characteristics of MV Power Line Channel 262

13.6.3 Characteristics of LV Power Line Channel 263

13.6.4 Power Line Noise Characteristics 263

13.7 Power Line Channel Modeling 269

13.7.1 Recent Results on the Modeling of Wireline Channels: Towards a Unified Framework 271

13.8 The IEEE 1901 Broadband over Power Line Standard 273

13.8.1 Overview of Technical Features 273

13.8.2 The MAC and the Two PLCPs 274

13.8.3 Access-Specific Features 275

13.9 PLC and the Smart Grid 277

13.9.1 PLC for MV 279

13.9.2 PLC for LV 279

13.10 Conclusions 283

References 284

Further Reading 285

14 Wireless Broadband Access: Air Interface Fundamentals 287

14.1 Introduction 287

14.2 Duplexing Techniques 287

14.2.1 Frequency-Division Duplex 288

14.2.2 Time-Division Duplex 288

14.3 Physical Layer Concepts 289

14.3.1 The Wireless Channel 289

14.3.2 Diversity 290

14.3.3 Channel Coding 291

14.3.4 Interleaving 291

14.3.5 Multi-Antenna Techniques and Multiple-Input Multiple-Output (MIMO) 291

14.4 Access Technology Concepts 295

14.4.1 Frequency Division Multiple Access (FDMA) 295

14.4.2 Time Division Multiple Access (TDMA) 295

14.4.3 Code Division Multiple Access (CDMA) 295

14.4.4 Orthogonal Frequency Division Multiplexing (OFDM) 297

14.4.5 MAC Protocols 299

14.5 Cross-Layer Algorithms 300

14.5.1 Link Adaptation 300

14.5.2 Channel-Dependent Scheduling 300

14.5.3 Automatic Repeat Request (ARQ) and Hybrid ARQ (HARQ) 302

14.6 Example Application: Satellite Broadband Access 303

14.7 Summary 303

Further Reading 304

15 WiFi: IEEE 802.11 Wireless LAN 305

15.1 Introduction 305

15.2 Technology Basics 306

15.2.1 System Overview 306

15.2.2 MAC Layer 308

15.2.3 Physical Layer 311

15.3 Technology Evolution 312

15.3.1 802.11 b 312

15.3.2 802.11 a/g 313

15.3.3 802.11 n 314

15.3.4 802.11 ac 316

15.4 WLAN Network Architecture 318

15.5 TV White Space and 802.11 af 320

15.6 Summary 320

Further Readings 321

16 UMTS: W-CDMA and HSPA 323

16.1 Introduction 323

16.2 Technology Basics 324

16.2.1 Network Architecture 324

16.2.2 Protocol Architecture 325

16.2.3 Physical Layer (L1) 327

16.2.4 Layer-2 334

16.2.5 Radio Resource Control (RRC) 336

16.3 UMTS Technology Evolution 338

16.3.1 Release 99 338

16.3.2 Release 5: High-Speed Downlink Packet Access (HSDPA) 339

16.3.3 Release 6: Enhanced Uplink 343

16.3.4 Release 7 347

16.3.5 Release 8 and Beyond 348

16.4 CDMA2000 350

16.5 Summary 351

Further Readings 352

17 Fourth Generation Systems: LTE and LTE-Advanced 353

17.1 Introduction 353

17.1.1 LTE Standardization 353

17.1.2 LTE Requirements 354

17.2 Release 8: The Basics of LTE 355

17.2.1 Network Architecture 355

17.2.2 PDN Connectivity, Bearers, and QoS Architecture 358

17.2.3 Protocol Architecture 360

17.2.4 Layer-1: The Physical Layer 361

17.2.5 Layer-2 and Cross-Layer Algorithms 370

17.2.6 Layer-3: Radio Resource Control (RRC) 380

17.3 Release 9: eMBMS and SON 383

17.3.1 Evolved Multimedia Broadcast Multicast Service (eMBMS) 384

17.3.2 Self-Organizing Networks (SON) 386

17.4 Release 10: LTE-Advanced 386

17.4.1 Carrier Aggregation 388

17.4.2 Heterogeneous Networks with Small Cells 391

17.5 Future of LTE-Advanced: Release 11 and Beyond 395

17.5.1 Cooperative Multi-Point (CoMP) 396

17.5.2 Release 12 and the Future of LTE 398

17.6 IEEE 802.16 and WiMAX Systems 399

17.7 Summary 400

Further Readings 402

18 Conclusions Regarding Broadband Access Networks and Technologies 403

Index 407

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.