0

Isogeometric Analysis

eBook - Toward Integration of CAD and FEA

Erschienen am 11.08.2009, 1. Auflage 2009
109,99 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9780470749098
Sprache: Englisch
Umfang: 360 S., 19.42 MB
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

The authors are the originators of isogeometric analysis, are excellent scientists and good educators. It is very original. There is no other book on this topic.
René de Borst, Eindhoven University of Technology

Written by leading experts in the field and featuring fully integrated colour throughout, Isogeometric Analysis provides a groundbreaking solution for the integration of CAD and FEA technologies. Tom Hughes and his researchers, Austin Cottrell and Yuri Bazilevs, present their pioneering isogeometric approach, which aims to integrate the two techniques of CAD and FEA using precise NURBS geometry in the FEA application. This technology offers the potential to revolutionise automobile, ship and airplane design and analysis by allowing models to be designed, tested and adjusted in one integrative stage.

Providing a systematic approach to the topic, the authors begin with a tutorial introducing the foundations of Isogeometric Analysis, before advancing to a comprehensive coverage of the most recent developments in the technique. The authors offer a clear explanation as to how to add isogeometric capabilities to existing finite element computer programs, demonstrating how to implement and use the technology. Detailed programming examples and datasets are included to impart a thorough knowledge and understanding of the material.

Provides examples of different applications, showing the reader how to implement isogeometric modelsAddresses readers on both sides of the CAD/FEA divideDescribes Non-Uniform Rational B-Splines (NURBS) basis functions

Autorenportrait

J. Austin Cottrell, Thomas J. R. Hughes& Yuri Basilievs, University of Texas at Austin, USA
J. Austin Cottrell is a postdoctoral scholar at the University of Texas at Austin, having received his PhD in Computational and Applied Mathematics in 2007. Isogeometric analysis is a topic pioneered by his graduate research under the supervision of Tom Hughes.

Tom Hughes was a leading professor of mechanical engineering at Stanford University before being lured to join the University of Texas at Austin in 2002 as Professor of Aerospace Engineering and Engineering Mechanics within the Institute for Computational Engineering and Sciences. He is co-editor of theInternational Journal of Computer Methods in Applied Mechanics and Engineering, a founder and past President of USACM and IACM, and past Chairman of the Applied Mechanics Division of ASME. A world leader in the development of the finite element method, he has received the Walter L. Huber Civil Engineering Research Prize from ASCE, the Melville Medal from ASME, the Computational Mechanics Award from the Japan Society of Mechanical Engineers, the von Neumann Medal from USACM, the Gauss-Newton Medal from IACM, and the Worcester Reed Warner Medal from ASME. Dr. Hughes is a member of the National Academy of Engineering.

Yuri Basilievs also obtained his PhD from the University of Texas at Austin in 2007 under the supervision of Tom Hughes.

Inhalt

Preface

1 From CAD and FEA to Isogeometric Analysis: An Historical Perspective

1.1 Introduction

1.2 The evolution of FEA basis functions

1.3 The evolution of CAD representations

1.4 Things you need to get used to in order to understand NURBS-based isogeometric analysis

Notes

2 NURBS as a Pre-analysis Tool: Geometric Design and Mesh Generation

2.1 B-splines

2.2 Non-Uniform Rational B-Splines

2.3 Multiple patches

2.4 Generating a NURBS mesh: a tutorial

2.5 Notation

Appendix 2.A: Data for the bent pipe

Notes

3 NURBS as a Basis for Analysis: Linear Problems

3.1 The isoparametric concept

3.2 Boundary value problems

3.3 Numerical methods

3.4 Boundary conditions

3.5 Multiple patches revisited

3.6 Comparing isogeometric analysis with classical finite element analysis

Appendix 3.A: Shape function routine

Appendix 3.B: Error estimates

Notes

4 Linear Elasticity

4.1 Formulating the equations of elastostatics

4.2 Infinite plate with circular hole under constant in-plane tension

4.3 Thin-walled structures modeled as solids

Appendix 4.A: Geometrical data for the hemispherical shell

Appendix 4.B: Geometrical data for a cylindrical pipe

Appendix 4.C: Element assembly routine

Notes

5 Vibrations and Wave Propagation

5.1 Longitudinal vibrations of an elastic rod

5.2 Rotation-free analysis of the transverse vibrations of a BernoulliEuler beam

5.3 Transverse vibrations of an elastic membrane

5.4 Rotation-free analysis of the transverse vibrations of a PoissonKirchhoff plate

5.5 Vibrations of a clamped thin circular plate using three-dimensional solid elements

5.6 The NASA aluminum testbed cylinder

5.7 Wave propagation

Appendix 5.A: Kolmogorovn-widths

Notes

6 Time-Dependent Problems

6.1 Elastodynamics

6.2 Semi-discrete methods

6.3 Spacetime finite elements

7 Nonlinear Isogeometric Analysis

7.1 The NewtonRaphson method

7.2 Isogeometric analysis of nonlinear differential equations

7.3 Nonlinear time integration: The generalized- method

Note

8 Nearly Incompressible Solids

8.1 B formulation for linear elasticity using NURBS

8.2 F formulation for nonlinear elasticity

Notes

9 Fluids

9.1 Dispersion analysis

9.2 The variational multiscale (VMS) method

9.3 Advectiondiffusion equation

9.4 Turbulence

Notes

10 FluidStructure Interaction and Fluids on Moving Domains

10.1 The arbitrary LagrangianEulerian (ALE) formulation

10.2 Inflation of a balloon

10.3 Flow in a patient-specific abdominal aorta with aneurysm

10.4 Rotating components

Appendix 10.A: A geometrical template for arterial blood flow modeling

11 Higher-order Partial Differential Equations

11.1 The CahnHilliard equation

11.2 Numerical results

11.3 The continuous/discontinuous Galerkin (CDG) method

Note

12 Some Additional Geometry

12.1 The polar form of polynomials

12.2 The polar form of B-splines

Note

13 State-of-the-Art and Future Directions

13.1 State-of-the-art

13.2 Future directions

Appendix A: Connectivity Arrays

A.1 The INC Array

A.2 The IEN array

A.3 The ID array

A.3.1 The scalar case

A.3.2 The vector case

A.4 The LM array

Note

References

Index

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist.
Wenn ein Format mit "Adobe DRM" genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss.
Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.