Beschreibung
Provides an elementary introduction to algebraic geometry. This book introduces principal objects, methods and goals of the subject. Theory is developed concurrently with many examples and exercises. Prerequisites include some linear and multilinear algebra and a basic background in abstract algebra.
Produktsicherheitsverordnung
Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg
Autorenportrait
InhaltsangabeI: Examples of Varieties and Maps.- Lecture 1 Affine and Projective Varieties.- Lecture 2 Regular Functions and Maps.- Lecture 3 Cones, Projections, and More About Products.- Lecture 4 Families and Parameter Spaces.- Lecture 5 Ideals of Varieties, Irreducible Decomposition, and the Nullstellensatz.- Lecture 6 Grassmannians and Related Varieties.- Lecture 7 Rational Functions and Rational Maps.- Lecture 8 More Examples.- Lecture 9 Determinantal Varieties.- Lecture 10 Algebraic Groups.- II: Attributes of Varieties.- Lecture 11 Definitions of Dimension and Elementary Examples.- Lecture 12 More Dimension Computations.- Lecture 13 Hilbert Polynomials.- Lecture 14 Smoothness and Tangent Spaces.- Lecture 15 Gauss Maps, Tangential and Dual Varieties.- Lecture 16 Tangent Spaces to Grassmannians.- Lecture 17 Further Topics Involving Smoothness and Tangent Spaces.- Lecture 18 Degree.- Lecture 19 Further Examples and Applications of Degree.- Lecture 20 Singular Points and Tangent Cones.- Lecture 21 Parameter Spaces and Moduli Spaces.- Lecture 22 Quadrics.- Hints for Selected Exercises.- References.
Inhalt
1: Affine and Projective Varieties. 2: Regular Functions and Maps. 3: Cones, Projections, and More About Products. 4: Families and Parameter Spaces. 5: Ideals of Varieties, Irreducible Decomposition. 6: Grassmannians and Related Varieties. 7: Rational Functions and Rational Maps. 8: More Examples. 9: Determinantal Varieties. 10: Algebraic Groups. 11: Definitions of Dimension and Elementary Examples. 12: More Dimension Computations. 13: Hilbert Functions and Polynomials. 14: Smoothness and Tangent Spaces. 15: Gauss Maps, Tangential and Dual Varieties. 16: Tangent Spaces to Grassmannians. 17: Further Topics Involving Smoothness and Tangent Spaces. 18: Degree. 19: Further Examples and Applications of Degree. 20: Singular Points and Tangent Cones. 21: Parameter Spaces and Moduli Spaces. 22: Quadrics.
Schlagzeile
Corrected 3rd printing